SOCY7708: Hierarchical Linear Modeling
Instructor: Natasha Sarkisian
Class notes: HLM Diagnostics

Like OLS, HLM models rely on certain assumptions that have to be satisfied in order for
regression coefficients to be unbiased and efficient estimates of the parameters of interest.
Therefore, it is important to watch out for possible assumption violations and to take steps to
prevent them. We will address the issues of model specification, collinearity, homoscedasticity,
normality of level 1 and level 2 residuals, and linearity.

1. Model specification.

In HLM models, the issue of model specification concerns two main questions: (1) Did we
include the right fixed effects? (2) Did we include the right random components? As we
discussed, when specifying your model, you should rely heavily on your theory as well as utilize
hypothesis testing. But there are some additional steps you can take to prevent model
misspecification:

e Consider including aggregates of level 1 variables. It is always possible that what appears
to be an effect of a level 1 variable is, in reality, an effect of its level 2 aggregate. The
only way to test is to introduce such an aggregate. So far, we discussed aggregates to the
mean, but sometimes, it is also possible to use group-level standard deviations. For
example, you can use MEANSES to indicate the average level of SES in the school and
DEVSES (within-school standard deviation) to indicate how diverse each school is in
terms of SES. Such diversity may have an impact above and beyond the impact of the
average level.

. bysort id: egen devses=sd(ses)

. mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses

i.female##i.sector devses || id: female, cov(unstr)
Mixed-effects ML regression Number of obs = 7,185
Group variable: id Number of groups = 160
Obs per group:

min = 14
avg = 44.9
max = 67
Wald chi2 (9) = 861.54
Log likelihood = -23217.242 Prob > chi?2 = 0.0000
mathach | Coef. Std. Err. z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
ses | 2.852182 .147225 19.37 0.000 2.563626 3.140738
meanses | 3.123813 .5007382 6.24 0.000 2.142384 4.105242

|

c.ses#|
c.meanses | .7762981 .2691847 2.88 0.004 .2487057 1.30389

|

ses | 0 (omitted)

1l.sector | 1.00463 .4108992 2.44 0.014 .1992828 1.809978

|

|

sector#c.ses



1 -1.54621 .2220969 -6.96 0.000 -1.981512 -1.110908

|
|
l.female | -1.218688 .2383675 -5.11 0.000 -1.68588 -.7514966
|
|

meanses 0 (omitted)

female# |

c.meanses |
1 | -.0401053 .5063098 -0.08 0.937 -1.032454 .9522437

|

female# |

sector |
11 | .05406438 .4182702 0.13 0.896 -.7651507 .8744384

|
devses | -2.666202 1.457351 -1.83 0.067 -5.522557 .1901533
_cons | 14.57225 1.0414306 13.99 0.000 12.53107 16.61343

Random-effects Parameters | Estimate std. Err [95% Conf. Interval]
_____________________________ +________________________________________________
id: Unstructured |

var (female) | .9479572 .5671689 .2934333 3.062444

var (_cons) | 2.934085 .5636358 2.013527 4.27551

cov (female, cons) | -1.170931 .4832245 -2.118034 -.2238285
_____________________________ +________________________________________________
var (Residual) | 36.3806 6189185 35.18755 37.61411

LR test vs. linear model: chi2(3) = 183.93 Prob > chi2 = 0.0000

Note:

LR test is conservative and provided only for reference.

Consider including level 2 predictors of level 1 slopes (i.e., cross-level interactions) if
you find significant variation in these slopes

If the proportion of explained variance (R-squared — we discussed earlier how to
calculate R-squared within each level and overall) is substantially reduced when you add
a fixed effect, that can be a sign of misspecification.

Sometimes a fixed effect misspecification (e.g., a nonlinearity) can lead to a
misspecification of the random effects (excluded curvilinear effect may show up as a
significant variance component for the slope). We will return to the issue of linearity
below.

To prevent the misspecification problems in terms of random components:

Always test whether each of your level 1 slopes varies across level 2 units (i.e., try to
estimate each slope as random). However, you have to be careful not to “overtax” your
data — if you have very few lower level cases within each upper level unit, you can’t do
too many random components.

If the model doesn’t converge or if it takes a long time to converge, that may mean that
the model has too many random effects and the data are relatively sparse. In general, you
should be cautious in specifying level-1 coefficients as random — as the number of
random effects grows, the number of variances/covariances to be estimated increases
even faster (for m random predictors, there are 1+m(m+1)/2 variance covariance
components). As the number of random effects grows, significantly mode information is
required to obtain reasonable estimates of variance/covariance components. The
maximum depends on a number of factors: the magnitude of the variance components,



the degree of intercorrelation among the random effects, the magnitude of sigma squared,
and other characteristics of the data.

e |f there are high correlations among level-1 coefficients (i.e., slopes for different
variables—correlations with the intercept are ok), the model must be simplified. There
are a number of ways of dealing with it. You can, for example, use factor analysis to
form scales and reduce the number of variables. You can also constrain one or more
random effects to be zero (i.e. keep only the fixed effect for that variable), thus
eliminating the correlation. This works well if that random effect is in fact negligible in
size and/or non-significant.

2. Multicollinearity

Like regular OLS, HLM models can be affected by multicollinearity. There are no tools to check
for it specifically for mixed command, but you can check basic correlations among your
independent variables as well as variance inflation factors (VIFs) for the same model estimated
with OLS:

. pwcorr mathach ses female meanses sector size
| mathach ses female meanses sector size
_____________ +______________________________________________________
mathach | 1.0000
ses | 0.3608 1.0000
female | -0.1231 -0.0679 1.0000
meanses | 0.3437 0.5306 -0.0589 1.0000
sector | 0.2040 0.1896 0.0065 0.3573 1.0000
size | -0.0506 -0.0673 -0.0388 -0.1268 -0.4237 1.0000

Source | SS df MS Number of obs = 7185
————————————— e bt T F( 5, 7179) = 315.35
Model | 61205.6611 5 12241.1322 Prob > F = 0.0000
Residual | 278671.273 7179 38.8175614 R-squared = 0.1801
————————————— e Adj R-squared = 0.1795
Total | 339876.934 7184 47.3102637 Root MSE = 6.2304
mathach | Coef std. Err t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
ses | 2.148034 .1113801 19.29 0.000 1.929697 2.366372
female | -1.321295 .1478042 -8.94 0.000 -1.611034 -1.031555
meanses | 2.889622 .2206451 13.10 0.000 2.457093 3.322151
sector | 1.503238 .1724585 8.72 0.000 1.165169 1.841308
size | .0003457 .0001345 2.57 0.010 .0000821 .0006093
_cons | 12.32108 .2222729 55.43 0.000 11.88536 12.7568
. vif
Variable | VIF 1/VIF
_____________ +______________________
meanses | 1.54 0.648947
ses | 1.39 0.717093
sector | 1.38 0.726733
size | 1.22 0.818586
female | 1.01 0.992362
_____________ +______________________
Mean VIF | 1.31



Different researchers advocate for different cutoff points for VIF. Some say that if any one of
VIF values is larger than 4, there are some multicollinearity problems associated with that
variable. Others use cutoffs of 5 or even 10. It can also be useful to check level 2 separately

using means of your dependent variable as an outcome:
. bysort id: egen mathachm=mean (mathach)

. reg mathachm meanses sector size if tagged==1

Source | SS df MS Number of obs = 160
————————————— e F(3, 156) = 99.84
Model | 1016.16465 3 338.72155 Prob > F = 0.0000
Residual | 529.275622 156 3.39279245 R-squared = 0.6575
————————————— e Adj R-squared = 0.6509
Total | 1545.44027 159 9.71975014 Root MSE = 1.842
mathachm | Coefficient Std. err. t P>t [95% conf. interval]
_____________ +________________________________________________________________
meanses | 5.359654 .3777613 14.19 0.000 4.613467 6.105841
sector | 1.524517 .349298 4.36 0.000 .8345531 2.214481
size | .0005152 .0002603 1.98 0.050 1.00e-006 .0010293
_cons | 11.38922 .4055502 28.08 0.000 10.58814 12.1903
. vif
Variable | VIF 1/VIF
_____________ +______________________
sector | 1.42 0.706227
size | 1.26 0.794707
meanses | 1.15 0.872531
_____________ +______________________
Mean VIF | 1.27

When running your mixed models, you can also watch out for potential signs of multicollinearity
(e.g., large coefficients for two correlated variables going in opposite directions, high standard
errors).

3. Normality

HLM models assume that the level-1 and level 2 error terms are normally distributed. To make
sure this assumption will be met, it is important to do some preliminary data screening before
running mixed models. It is especially important to ensure that your dependent variable
distribution is as close to normal as possible, but you should check independent variables as well.
If substantial deviations from normality are identified, consider fixing them with a
transformation. Note that when examining normality of level 2 variables, you should either have
a separate level 2 file or you should limit your analysis to one record per higher level unit.

. egen tagged=tag(id)

. histogram size if tagged==1
(bin=12, start=100, width=217.75)
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Looks like a right skew; to find a transformation:
ladder size if tagged==

Transformation formula
cubic size”3
square size”"2
identity size

square root sgrt (size)
log log(size)

1/ (square root) 1/sqrt (size)
inverse 1/size
1/square 1/ (size”2)
1/cubic 1/ (size”3)

gladder size if tagged==1
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Square root looks the best, so we would generate it and then later on import that transformed
variable into HLM:

. gen sizesqgrt=sqgrt(size)

If a variable contains zero or negative values, you need to add a constant to it before looking for
transformations (such that all values of the variable become larger than zero). For example:

ladder mathach

Transformation Formula chi2 (2) Prob > chi?2
Cubic mathach”3 758.08 0.000
Square mathach”2 758.90 0.000
Identity mathach 914.19 0.000
Square root sgrt (mathach)

Log log (mathach)

1/ (Square root) 1/sgrt (mathach)

Inverse 1/mathach

1/Square 1/ (mathach”"2)

1/Cubic 1/ (mathach”"3)

. gladder mathach
sum mathach
Variable | Obs Mean Std. dev. Min Max
mathach | 7,185 12.74785 6.878246 -2.832 24.993
. gen mathach c=mathach-r (min)+1
sum mathach c
Variable | Obs Mean Std. dev. Min Max
mathach c | 7,185 16.57985 6.878246 1 28.825

ladder mathach c

Transformation Formula chi2 (2) Prob > chi?2
Cubic mathac~c”"3 595.26 0.000
Square mathac~c”2 1029.42 0.000
Identity mathac~c 914.19 0.000
Square root sgrt (mathac~c) 380.40 0.000
Log log (mathac~c)

1/ (Square root) 1/sqrt (mathac~c)

Inverse 1/mathac~c

1/Square 1/ (mathac~c”"2)

1/Cubic 1/ (mathac~c”"3)

. gladder mathach c

If your sample size is large, everything will be significantly different from normal, so you should
either rely on graphical examination (gladder) or randomly select a subsample of your dataset
and do this type of analysis for that subsample.



If as variable is negatively skewed, you might have an easier time finding a transformation for it
after reversing it. To reverse the variable and yet keep all the values positive, you can subtract it
from its maximum value +1; for example:

sum mathach
Variable | Obs Mean Std. Dev. Min Max
mathach | 7185 12.74785 6.878246 -2.832 24.993
. gen mathachr=r (max)+l-mathach
sum mathachr
Variable | Obs Mean Std. Dev. Min Max
mathachr | 7185 13.24515 6.878246 .9999999 28.825

As you are examining normality, pay attention to outliers as well — sometimes, it is useful to top-
code or bottom-code outliers in addition to or instead of transforming a variable.

. graph box ses
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sum ses, detail
ses
Percentiles Smallest
1% -1.848 -3.758
5% -1.318 -2.838
10% -1.038 -2.508 Obs 7185
25% -.538 -2.508 Sum of Wgt. 7185
50% .002 Mean .0001434
Largest Std. Dev. . 7793552
75% .602 1.732
90% 1.022 1.762 Variance .6073945
95% 1.212 1.832 Skewness -.2281447
99% 1.512 2.692 Kurtosis 2.620279



. gen sesl=clip(ses, -2.9, 1.9)

Never top-code or bottom-code more than 5% of the distribution; better yet, do 1% or less.
Sometimes transformation might be a better way to bring in outliers so consider both options or a
combination of them.

If you do a good job dealing with normality problems and with outliers during preliminary
screening, you should not run into problems with multivariate normality. Still, we need to check
both level 1 and level 2 residuals for normality. Let’s estimate a model, obtain residuals, and
inspect them.

. mixed mathach c.ses##fc.meanses c.ses##i.sector i.female##c.meanses

i.female##i.sector || id: female, cov(unstr)
Mixed-effects ML regression Number of obs = 7,185
Group variable: id Number of groups = 160
Obs per group:
min = 14
avg = 44.9
max = 67
Wald chi2 (8) = 849.53
Log likelihood = -23218.854 Prob > chi2 = 0.0000
mathach | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
ses | 2.856887 .1473012 19.39 0.000 2.568182 3.145592
meanses | 3.203604 .4968255 6.45 0.000 2.229844 4.177364
|
c.sest|
c.meanses | .832274 .268213 3.10 0.002 .3065862 1.357962
|
ses | 0 (omitted)
1l.sector | 1.167355 .3994507 2.92 0.003 .3844458 1.950204
|
sectorfc.ses |
1 | -1.554133 .2223377 -6.99 0.000 -1.989907 -1.118359
|
1.female | -1.22104 .238342 -5.12 0.000 -1.688182 -.7538981
meanses | 0 (omitted)
|
female# |
c.meanses |
1 | -.0074533 .5063542 -0.01 0.988 -.9998894 .9849827
|
female# |
sector |
11 | .047171 .4186158 0.11 0.910 -.773301 .8676429
|
cons | 12.71993 .2439351 52.14 0.000 12.24183 13.19804
Random-effects Parameters | Estimate sStd. Err [95% Conf. Interval]
_____________________________ +________________________________________________
id: Unstructured |
var (female) | .9446425 .5677046 .290883 3.067726
var (_cons) | 2.897432 .55434 1.991409 4.215665
cov (female, cons) | -1.091921 4762149 -2.025285 -.1585568



_____________________________ +________________________________________________
var (Residual) | 36.37821 .6188368 35.18531 37.61155

LR test vs. linear model: chi2 (3) = 190.77 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

To check the distribution of error terms, we obtain level-1 residuals and level-2 residuals. Here is
what we can obtain using predict command:

xb xb, linear predictor for the fixed portion of the model

stdp standard error of the fixed-portion linear prediction xb

fitted fitted values, linear predictor of the fixed portion plus
contributions based on predicted random effects

residuals residuals, response minus fitted values

rstandard standardized residuals

reffects best linear unbiased predictions (BLUPs) of the

random effects. By default, BLUPs for all random effects in the
model are calculated. You must specify g new variables, where g is
the number of random-effects terms in the model.

reses standard errors of the best linear unbiased predictions (BLUPs) of
the random effects. By default, standard errors for all BLUPs in
the model are calculated. You must specify g new variables.

Thus, residuals will give you level 1 residuals, and reffects will give you level 2 residuals for
each level 2 random component. You should examine both types of residuals to assess normality.
Level-1 residuals:

predict llresid, resid

histogram llresid, normal
(bin=38, start=-19.084782, width=.96868813)
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Level 2 residuals:

Inverse Normal

predict 1l2resid*, reffects

histogram 12residl if tagged==1, normal
(bin=12, start=-4.0914528, width=.6652911)

0
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Density
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gnorm l2residl

-1 0 1
BLUP r.e. for id: female
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BLUP r.e. for id: female
0
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histogr
(bin=12,
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start=-1.3546074,

0
Inverse Normal

12resid2 if tagged==1, normal

width=.2191729)
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BLUP r.e. forid: _cons
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If there are problems with normality of residuals but you can’t fix them with simple

transformations or top/bottomcoding, you can use robust option available with mixed for robust

standard errors to obtain standard errors and significance tests that are less dependent on
assumptions:

. mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses i.female#
> #i.sector || id: female, cov(unstr) robust

note: ses omitted because of collinearity
note: meanses omitted because of collinearity

Mixed-effects regression Number of obs = 7,185
Group variable: id Number of groups = 160

Obs per group:

min = 14

avg = 44.9

max = 67

Wald chi2 (8) = 1204.55

Log pseudolikelihood = -23218.854 Prob > chi2 = 0.0000

(Std. Err. adjusted for 160 clusters in id)

| Robust

mathach | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
ses | 2.856887 .1408367 20.29 0.000 2.580852 3.132922
meanses | 3.203604 .4716531 6.79 0.000 2.27918 4.128027

|

c.ses#|
c.meanses | .832274 .2933011 2.84 0.005 .2574144 1.407134

|

|

0 (omitted)
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l.sector 1.167355 .3975957 2.94 0.003 .3880816 1.946628

sector#c.ses

|
|
|
1 | -1.554133 .2228935 -6.97 0.000 -1.990996 -1.11727
|
1.female | -1.22104 .2216856 -5.51 0.000 -1.655536 -.7865441
meanses | 0 (omitted)
|
female# |
c.meanses |
1 | -.0074533 .4225481 -0.02 0.986 -.8356324 .8207257
|
female# |
sector |
11 | .047171 .4142162 0.11 0.909 -.7646779 .8590199
|
cons | 12.71993 .2224148 57.19 0.000 12.28401 13.15586
| Robust
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ +________________________________________________
id: Unstructured |
var (female) | .9446425 .5153373 .3242692 2.751879
var (_cons) | 2.897432 .5871549 1.947691 4.310289
cov (female, cons) | -1.091921 .452792 -1.979377 -.2044647
_____________________________ +________________________________________________
var (Residual) | 36.37821 .7087571 35.01526 37.79421

You can also use bootstrapping, although it does take time to calculate:

bootstrap, cluster(id): mixed mathach c.ses##c.meanses c.ses##i.sector
i.female##c.meanses i.female##i.sector || id: female, cov(unstr)
(running mixed on estimation sample)

-————4---1 ———+--=- 2 ———+--- 3 -——+-— 4 ———+---5
.................................................. 50

Mixed-effects ML regression Number of obs = 7,185
Group variable: id Number of groups = 160

Obs per group:

min = 14

avg = 44.9

max = 67

Wald chi?2 (8) = 1548.18

Log likelihood = -23218.854 Prob > chi2 = 0.0000

(Replications based on 160 clusters in id)

| Observed Bootstrap Normal-based

mathach | Coef. Std. Err. z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
ses | 2.856887 .1349074 21.18 0.000 2.592474 3.121301
meanses | 3.203604 .3618389 8.85 0.000 2.494412 3.912795

|

c.ses#|
c.meanses | .832274 .3020349 2.76 0.006 .2402965 1.424252

|

|

0 (omitted)

13
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0.895

.4676774

-1.971472

-1.596362

-.700545

-.6554766

12.36778

1.867032

-1.136794

-.8457178

.6856383

.7498186

13.07209

B
S

ootstrap
td. Err.

.2268802
.4663447
.2330362

Normal-based

[95% Conf.

.5899694
2.113545
-1.548663

Interval]

1.512535
3.972053
-.6351782

1l.sector | 1.167355 .3569849 3
|
sectorfc.ses |
1 | -1.554133 .2129321 -7
|
1.female | -1.22104 .1914944 -6
meanses | 0 (omitted)
|
female# |
c.meanses |
1 | -.0074533 .3536247 -0
|
female# |
sector |
11 | .047171 .3585003
|
cons | 12.71993 .1796728 70
| Observed
Random-effects Parameters | Estimate
_____________________________ +
id: Unstructured |
var (female) | .9446425
var (_cons) | 2.897432
cov (female, cons) | -1.091921
_____________________________ +
var (Residual) | 36.37821
LR test vs. linear model: chi2(3) = 190.77

Prob > chi2

Note: LR test is conservative and provided only for reference.

4. Linearity

= 0.0000

Before running mixed models, it’s also a good idea to examine the relationship of each
independent variable to the dependent to assess its linearity. A good tool for such an examination

is a lowess plot — that is, a scatterplot with locally weighted regression line (based on means or

medians) going through it:

lowess mathach sesl

Lowess smoother
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We can change bandwidth to make the curve less smooth (decrease the number) or smoother

(increase the number):
lowess mathach sesl, bwidth(.1)

Lowess smoother
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We can also add a regression line to see the difference better:
scatter mathach sesl, mcolor(yellow) || lowess mathach sesl, lcolor(red)
1fit mathach sesl, lcolor (blue)

o
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-10

mathach lowess mathach ses1

Fitted values

You can do an approximate test for multivariate linearity (based on OLS) with a user-written
mrunning program:

search mrunning
Keyword search
Keywords: mrunning
Search: (1) Official help files, FAQs, Examples, SJs, and STBs
Search of official help files, FAQs, Examples, SJs, and STBs
SJ-5-3 gr0017 e e e e . A multivariable scatterplot smoother
(help mrunning, running if installed) . . . . P. Royston and N. J. Cox
Q3/05 SJ 5(3):405--412
presents an extension to running for use in a
multivariable context

Click on gr0017 to install the program. Now we can use it:

. mrunning mathach ses female sector meanses size

15
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If the relationship looks nonlinear on lowess plot, consider using transformations to fix it before
importing data into HLM. (Note that if the relationship is too complex, sometimes we may
choose to break up the corresponding independent variable into a series of dummies instead.)

Monotone nonlinear relationship: Power transformations can be used to linearize relationships if
strong monotone nonlinearities are found. The following chart gives suggestions for
transformations when the curve looks a certain way:

y up
y2, ys
4
N /
ol

5 s X UP
log x, —1/x \ / x2, x8
o N

Y
y down
log y, —1/y

x down

Nonmonotone relationship: For non-monotone relationships (e.g. parabola or cubic), use
polynomial functions of the variable, e.g. ses and ses squared, etc. Note that when including
variables that are generated using other variables already in the model (as in this case, or when
we want to enter a product of two variables to model an interaction term), we should mean-
center the variable outside of HLM (only if it is continuous; don't mean-center dichotomous
variables!), and then square and/or cube the mean-centered variable. We will then include the
mean-centered variable itself and its transformations into our HLM file and our models. For
example, if we are dealing with a second level variable, we would get its mean across 160 level 2
cases by restricting the calculation to one case per level 2 unit:

. sum size if tagged==1
Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
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size | 160 1097.825 629.5064 100 2713
. gen sizem=size-r (mean)

. gen sizem2=sizem"2

Oftentimes, the same transformation that helps with normality also will improve linearity, but

that it is not always the case. Overall, linearity is more important to enforce than normality for a

given variable, so if you end up with incompatible transformations, opt for the one improving
linearity.

Once we estimated our HLM model and obtained residuals, we can inspect them to further assess

linearity. First, we can assess the overall pattern by plotting level 1 residuals against predicted
values; there should be no discernable pattern:

qui mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses
i.female##l sector || id: female, cov(unstr)

. predict xb, xb

. scatter llresid xb

o
N

10
|

Residuals
0
1
°

-10

-20
1

Linear prediction, fixed portion

This does not look too good; indicates potential heteroscedasticity or nonlinearity problems.

To test the linearity assumption for continuous predictors, it is useful to plot residuals against
each of the continuous dependent variable. To improve our ability to detect a curvilinear
relationship, we will include a smoother in our plot using lowess command.

In level 1 file;

. lowess llresid ses
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Lowess smoother
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ses
bandwidth = .8

Looks more or less fine, but we do see some outliers on SES.

In level 2 file:

. lowess

12residl meanses if tagged==

Lowess smoother

BLUP r.e. for id: female
0
|

-1
|

¢ °
¢ ) ¢ °, .. °
° ® o9 o ® °
.. a :.Qo.o v o’ ..o...
~~~~~~ ° ° a0 °
° "—.';‘":“!0; —o.“.o!%‘—.* ... T ot Y
N eeo ® 9 o ° i
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[/
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°
¥ 5 0 5
meanses
bandwidth = .8

. lowess 1l2resid2 meanses if tagged==
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Lowess smoother
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Based on these graphs, we could consider modeling nonlinear relationships with MEANSES

(e.g. cubic).

We can also use such plots to search for potential other relationships and examine their shape,

e.g. with PRACAD:

. lowess 1l2residl pracad if tagged==

Lowess smoother

< A °
° °
° °
L4 °
oo . s
S se O e °°
° o o ..fo o, Po 03.
he] ° “ ° ° &N 0’. ® o g ) ,,’:
5ol o @ ° o__94°%g o @ o — 0.
20 o 00 R 00 ’0""“0‘:1—" - “
& » °®. .... o ‘ o o
a /.Q/ ¢ .. o0 .'.’ e o N ]
=0 DL I SR o’
N - ° ° .. °
° L
[ ° ..
< Je
! T T T T T T
0 2 4 6 8 1
pracad
bandwidth = .8

. lowess 1l2resid2 pracad if tagged==1
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Lowess smoother
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Based on graphs for MEANSES, looks like we need a quadratic and cubic term; let’s try that.

We run the following model:

Level-1 Model

MATHACH;j = foj + f1i*(FEMALE;) + f27*(SESij) + rij

Level-2 Model

Poj = yoo + y01*(SECTOR;) + yo2*(MEANSESM,;) + y03*(MEANSES2;) + y04*(MEANSES3)) + Ug;
1 = y10 + y11*(SECTOR)) + y12*(MEANSESM;)) + y13*(MEANSES2;)) + y14*(MEANSES3;) + uyj
2 = y20 + y21*(SECTOR)) + y22*(MEANSESM;) + y23*(MEANSES2;) + y24*(MEANSES3)) + Uy;

Mixed Model

MATHACH;; = y00 + y01*SECTOR; + 702*MEANSESM; + y0s*MEANSES2;

+ 70*MEANSES3;

+ y10*FEMALE;; + y11*SECTOR*FEMALE;j; + y1.*MEANSESM;*FEMALE;; + y15*MEANSES2

*FEMALE;;
+ y14*MEANSES3*FEMALE;;

+ 720*SESij + 721*SECTOR*SES;j + 722*MEANSESM;*SES;j + 72s*MEANSES2*SES;j

+ y24*MEANSESS3*SES;j
+ Ugj + U*FEMALE;j + U*SESjj + rij

. mixed mathach c.ses##c.meanses##c.meanses##c.meanses c.ses##i.sector
female, cov(unstr)

i.female##c.meanses##c.meanses##c.meanses i.female##i.sector || id:

Mixed-effects ML regression
Group variable: id

Number of obs
Number of groups

Obs per group:

7,185
160

14
44.9
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Log likelihood

c.ses#|

c.meanses

c.meanses#|

c.meanses

c.ses#|
c.meanses#|

c.meanses

c.meanses# |
c.meanses# |

c.meanses

c.ses#|
c.meanses# |

Q

c.meanses

ses
1.sector

sectorfc.ses
1

1.female
meanses

.meanses#|

female# |

c.meanses
1

female# |
c.meanses# |

c.meanses
1

female# |
c.meanses# |

Q

c.meanses
1

.meanses# |

female# |

sector
11

= -23211.143

max =

Wald chi2 (14) =
Prob > chi2 =

3.050629
1.817196

.4610032

-.9934494

-1.44887

3.866993

.8161978

0

1.283584

-1.44¢67

-1.230308
0

.7925874

-.1274134

-1.805483

-.0036908

12.8906

2.725935
.2386537

-.4274538

-3.122156

-2.697987

.6152377

-1.008421

.5067598

-1.888929

-1.767358

-.8025233

-2.259695

-4.908926

-.8276415

12.35514

3.375323
3.395738

1.34946

1.135258

-.1997537

7.118749

2.640816

2.060408

-1.004472

-.693259

2.387698

2.004869

1.297959

.8202598

13.42606

Random-effects Parameters

std. Err
.1656633 18
.8053935
.4533027 1
1.086095 -0
.6373161 -2
1.659089 2
.9309449 0
(omitted)
.3963461 3
.2256309 -6
.2740098 -4
(omitted)
.8138469 0
1.087919 -0
1.583418 -1
.4203907 -0
.2731983 47
| Estimate

4 P>|z|
41 0.000
26 0.024
.02 0.309
.91 0.360
.27 0.023
.33 0.020
.88 0.381
.24 0.001
.41 0.000
.49 0.000
.97 0.330
.12 0.907
.14 0.254
.01 0.993
18 0.000

sStd. Err.

[95% Conf.

Interval]

_____________________________ +________________________________________________
id: Unstructured
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var (female)
var (_cons)
cov (female, cons)

.91266

.5645054

.530815

.4651488

.2715297
1.862182
-1.923221

3.067614
3.993778
-.0998711

LR test vs. 1li

near model:

2.727112
-1.01154¢6
36.32734
chi2 (3) = 180.35

Prob > chi?2

Note: LR test is conservative and provided only for reference.

It looks like there is a bunch of non-significant coefficients that we could omit; let’s omit and

= 0.0000

compare using BIC (we could also do joint hypothesis test for these coefficients first):

estat ic

Akaike's information criterion and Bayesian information criterion

N = number of observations.

See

[R] BIC

mixed mathach c.ses##c.meanses##c.meanses##c.meanses

female, cov(un

Mixed-effects ML regression

Group variable

Log likelihood

str)

: id

= -23212.015

Number
Number

c.ses##i.sector i.female

of obs
of groups =

Obs per group:

min =
avg
max =

Wald chi2 (10)

Prob >

chiz2 =

7,185
160

14
44.9
67

873.56
0.0000

c.meanses |

c.meansest |
c.meanses |
|

c.ses#|
c.meanses# |
c.meanses |
|
c.meanses# |
c.meansest|
c.meanses |
|

c.ses#|
c.meansest|
.meanses# |
c.meanses |

Q

3.053147
2.324254

.4447929

-1.088537

-1.458181

2.697434

.8568271

.1655297
.6047559

.4528177

.8269356

.6368045

1.288303

.9304757

.98

.32

.29

.09

.92

0.326

0.022

0.036

0.357

2.728715
1.138954

-.4427134

-2.709301

-2.706295

.1724068

-.9668717

3.377579
3.509553

1.332299

.5322275

-.2100674

5.222461

2.680526

id:
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ses |
1.sector | 1.285378 .

|

sector#c.ses |
1 | -1.447254

|
1.female | -1.2130093
_cons | 12.87913

id: Unstructured
var (female)
var (_cons)
cov (female, cons)

LR test vs. linear model: chi
Note: LR test is conservative
estat ic

Akaike's information criterio

Note: BIC uses N = number of

0 (omitted)

2859008 4.50 0.000 .7250229 1.845734
.2254075 -6.42 0.000 -1.889045 -1.005464
.1813475 -6.69 0.000 -1.568528 -.8576586
.2388608 53.92 0.000 12.41097 13.34729
| Estimate Std. Err [95% Conf. Intervall]
+ ________________________________________________
|

| .9800848 .5711366 .3127755 3.071104
| 2.742527 .5344897 1.871805 4.018289
| =1.047902 .4702886 -1.969651 -.1261537
+ ________________________________________________
| 36.3267 6179416 35.13552 37.55826

2(3) = 182.23 Prob > chi2 = 0.0000

and provided only for reference.

n and Bayesian information criterion

observations. See [R] BIC note.

BIC strongly prefers the more parsimonious model. We could also consider getting rid of cubed
term for MEANSES, but let’s keep for now and examine graphically using margins and

marginsplot:
sum ses
Variable | Obs
_____________ +_______________
ses | 7,185

global sesmin=r (min)
global sesmax=r (max)
global sesmean=r (mean)

global plussd=r (mean)+r (sd)

global minussd=r (mean) -r (sd)

sum meanses if tagged==1
Variable | Obs
meanses | 160 -

global meansesmin=r (min)

Mean Std. Dev Min Max
.0001434 .7793552 -3.758 2.692
Mean Std. Dev Min Max
.0001875 .4139731 -1.188 .831
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global meansesmax=r (max)

global meansesmean=r (mean)

global meansesplussd=r (mean) +r (sd)
global meansesminussd=r (mean)-r (sd)

margins, at(ses= ($sesmin Sminussd $sesmean $plussd $sesmax) meanses=(Smeans
> esmin $meansesminussd $meansesmean Smeansesplussd $meansesmax))

Predictive margins Number of obs = 7,185
Expression : Linear prediction, fixed portion, predict/()
1. at . ses = -3.758
meanses = -1.188
2. at : ses = -3.758
meanses = -.4141606
3._at : ses = -3.758
meanses = -.0001875
4. at : ses = -3.758
meanses = .4137856
5. at : ses = -3.758
meanses = .831
6. at : ses = -.7792118
meanses = -1.188
7. at . ses = -.7792118
meanses = -.4141606
8. at : ses = -.7792118
meanses = -.0001875
9. at : ses = -.7792118
meanses = .4137856
10. at : ses = -.7792118
meanses = .831
11. at : ses = .0001434
meanses = -1.188
12. at . ses = .0001434
meanses = -.4141606
13. at : ses = .0001434
meanses = -.0001875
14. at . ses = .0001434
meanses = .4137856
15. at . ses = .0001434
meanses = .831
16. at . ses = .7794985

meanses = -1.188



17.

18.

19.

20.

21.

22.

23.

24.

25.

_at : ses =
meanses = -.

_at : ses =
meanses = -

_at . ses =
meanses =

_at : ses =
meanses =

_at : ses =
meanses =

_at . ses =
meanses = -

_at : ses =
meanses = -.

_at : ses =
meanses =

_at : ses
meanses =

.7794985

4141606

. 7794985
.0001875

.7794985
.4137856

. 7794985

.831

2.692
-1.188

2.692

.4141606

2.692
0001875

2.692

.4137856

2.692
.831

Delta-method

Margin Std. Err.

|

|

——————————— +

_at |
1 ] 10.37874 3.209518
2 | 4.600451 .6663532
3 4.080304 .5811327
4 | 5.065367 .751264
5 | 7.355452 2.772092
6 | 5.363829 1.216027
7 10.09419 .2479459
8 | 11.0489 .2189395
9 | 12.01957 .2887416
10 | 13.89045 1.095341
11 | 4.051753 1.573768
12 | 11.53154 .2505531
13 | 12.87213 .18279
14 | 13.83904 .2253969
15 | 15.60024 .801719
16 | 2.739676 2.201374
17 | 12.96889 .3257726
18 | 14.69536 .2105043
19 | 15.6585 .2385924
20 | 17.31002 7472577
21 | -.4800974 4.058521
22| 16.49609 .625075
23 | 19.16948 .4228441
24 | 20.12338 .4857143
25 | 21.50576 1.53443

P>|z|
3 0.001
0 0.000
2 0.000
4 0.000
5 0.008
1 0.000
1 0.000
7 0.000
3 0.000
8 0.000
7 0.010
2 0.000
2 0.000
0 0.000
6 0.000
4 0.213
1 0.000
1 0.000
3 0.000
6 0.000
2 0.906
9 0.000
3 0.000
3 0.000
2 0.000

[95% Conf.

4.0882
.294423
.941305
.592916
.922252
.980459
9.60822

10.61979

11.45365

11.74362

.9672248

11.04046

12.51387

13.39727

14.0289
-1.574938

12.33039

14.28278

15.19087

15.84543
-8.434652

15.27096

18.34072

19.1714

18.49833

NP WD w

Interval]

16.66928

5.90648
5.219303
6.537817
12.78865
7.747198
10.58015
11.47801

12.5855
16.03728
7.136281
12.02261
13.23039
14.28081
17.17158
7.054291
13.60739
15.10794
16.12613
18.77462
7.474457
17.72121
19.99824
21.07536
24.51318

marginsplot, x(meanses)

Variables that uniquely identify margins:

ses meanses
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Predictive Margins with 95% Cls

Linear Prediction, Fixed Portion

o —
! T T T T T
-3.758 -.77921180001434.7794985 2.692
ses
—&— meanses=-1.188 = ——¢—- meanses=-.4141606
----- ®---- meanses=-.0001875 — A— - meanses=.4137856
— % — meanses=.831

. marginsplot, x(ses)

Variables that uniquely identify margins: ses meanses

Predictive Margins with 95% Cls

Linear Prediction, Fixed Portion

o |
! T T T T T
-1.188 -.4141606 -.0001875 4137856 .831
meanses
—&— ses=-3.7568 @ ——¢—- ses=-.7792118
----- B---- ses=.0001434 — A— - 5es=.7794985
— *— — ses=2.692
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5. Homoscedasticity.

In HLM, the level-1 error terms should have equal variance across level-2 units (the assumption
of homoscedasticity or homogeneity of variance) — e.g., all schools should have variances equal
to the other schools in the sample.

In order to graphically examine whether residual variance is heterogenous, we can look at an
RFV plot — residuals vs. fitted values — we already constructed that plot above for the following
model:

. qui mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses
i.female##i.sector || id: female, cov (unstr)

. scatter llresid xb

o
N

10
1

Residuals
0
1
°

-10

-20

Linear prediction, fixed portion

We also already started to look at how residuals are distributed along the values of each
individual predictor by constructing RVP plots -- residuals vs. predictors — for our continuous
variables. However, for dichotomies, such plots are not very informative — however, we could
create separate RVF plots by group to assess heterogeneity:

. graph twoway (scatter llresid xb, by (female))
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Residuals

20

10

T T
0 5 10 15 20 O 5 10 15 20
Linear prediction, fixed portion

Graphs by female

We can also assess residual variance by group using sum command:

. bysort female: sum llresid

-> female = 0

Variable | Obs Mean Std. Dev. Min Max
_____________ +_________________________________________________________
llresid | 3,390 -1.63e-09 6.137624 -18.42606 17.33541

-> female = 1

Variable | Obs Mean Std. Dev. Min Max
_____________ +_________________________________________________________
llresid | 3,795 3.99e-09 5.826746 -19.04129 17.70039

Heterogeneity of variance can be a nuisance. When it is a nuisance, the causes can be:

One or more important level-1 predictors may have been omitted from the model.

The effects of a level-1 predictor that is random or nonrandomly varying have been
erroneously treated as fixed.

Dependent variable is severely non-normal — skewed or kurtotic (has heavy tails).

One (or more) of the independent variables has a nonlinear relationship to the dependent
variable that we failed to model correctly.

There are outliers or bad data.

We can deal with each of these problems; if that fails to remove heterogeneity, we can ultimately
rely on robust SE. Robust standard errors are standard errors that are relatively insensitive to
misspecification at the levels of the model and the distributional assumptions at each level. If the
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robust and model-based standard errors differ substantially, that suggests that you have some

problem with normality, homoscedasticity, or linearity, and you should further investigate those

HLM assumptions. If it is not possible to correct the problem, you can report robust standard

errors. Note, however, that the robust standard errors should be trusted only when the number of

higher-level units is moderately large relative to the number of explanatory variables at the

higher level.

Alternatively, heterogeneity of variance can be considered substantively interesting. In that case,
we can model it using level 1 predictors — to see whether there are some predictors that seem to
explain why level 1 variance is not uniform.

. mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses
cov (unstr)

i.female##i.se
note:
note:

Mixed-effects ML regression

Group variable

Log likelihood

ctor || id:

: id

= -23213.302

female,
ses omitted because of collinearity
meanses omitted because of collinearity

by (female))

7,185
160

meanses

c.ses#
c.meanses

ses
1.sector

sector#c.ses
1

1.female
meanses

_— - 4 =

female# |
c.meanses |
1 ]

|

female# |
sector |
11

2.869241

3.193401

.8249061

0

1.175409

-1.556612

-1.219793
0

-.0097155

.0393173

12.71989

3.157951
4.166368

1.349417

1.956761

-1.121664

-.7530101

.9824323

.8587064

13.19822

id: Unstructur

ed

var (female)

std. Err
.1473036 19.
.4964206 6.
.2676124 3.
(omitted)
.398656 2.
.2219166 -7.
.2381591 -5.
(omitted)
.5062072 -0.
.4180634 0.
.2440476 52.
Estimate
.9168451

residuals (independent,
Number of obs
Number of groups =
Obs per group:
Wald chi2 (8)
Prob > chi2 =
z P> z| [95% Conf.
48 0.000 2.580531
43 0.000 2.220435
08 0.002 .3003954
95 0.003 .394058
01 0.000 -1.991561
12 0.000 -1.686577
02 0.985 -1.001863
09 0.925 -.7800718
12 0.000 12.24157
Std. Err. [95% Conf.
.5663447 .2732121

3.076748
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var (_cons) | 2.79032 .5517962 1.893764 4.11133

cov (female, cons) | -.9889858 .4754416 -1.920834 -.0571373

_____________________________ +________________________________________________
Residual: Independent, |
by female |

0: var(e) | 38.572 .9571921 36.74083 40.49443

1: var(e) | 34.43275 .8047972 32.89096 36.04681

LR test vs. linear model: chi2(4) = 201.88 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
estat ic

Akaike's information criterion and Bayesian information criterion

Note: BIC uses N = number of observations. See [R] BIC note.
est store efemale
lrtest efemale baseline

Likelihood-ratio test LR chi2 (1) = 11.10
(Assumption: baseline nested in efemale) Prob > chi2 = 0.0009

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test i1s conservative.

Looks like gender explains some heterogeneity — there is a higher amount of unexplained

variance in math achievement among boys. We could assess model fit:

est store egender
estat ic

Akaike's information criterion and Bayesian information criterion

Note: BIC uses N = number of observations. See [R] BIC note.

. qui mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses
i.female##i.sector || id: female, cov(unstr)

est store baseline
estat ic

Akaike's information criterion and Bayesian information criterion
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| 7,185 . —23218.85 13 46463.71 46553.14
lrtest baseline egender

Likelihood-ratio test LR chi2 (1) = 11.10
(Assumption: . nested in egender) Prob > chi?2 0.0009

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test i1s conservative.

LR test suggests that the model with heterogenous variance is preferred; however, BIC

difference is only approximately 3, which is positive but not strong evidence in favor of that

more complex model. We might want to explore what explains that higher unexplained variance
among boys -- e.g., we could consider an interaction term of SES with gender (which would be
an interaction of two level 1 variables), or examine additional predictors such as minority status

etc.

We can also allow residual variance to vary by level 2 predictor groups:

. mixed mathach c.ses##c.meanses c.ses##i.sector i.female##c.meanses i.female#
> #i.sector || id: female, cov(unstr) residuals (independent, by (sector))

note: ses omitted because of collinearity

note: meanses omitted because of collinearity

Mixed-effects ML regression Number of obs = 7,185
Group variable: id Number of groups = 160

Obs per group:

min = 14
avg = 44.9
max = 67
Wald chi2(8) = 822.03
Log likelihood = -23205.16 Prob > chiz2 = 0.0000
mathach | Coef Std. Err Z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
ses | 2.855303 .1528454 18.68 0.000 2.555731 3.154874
meanses | 3.193349 .5003151 6.38 0.000 2.21275 4.173949

|

c.sest|
c.meanses | .8257218 .2673987 3.09 0.002 .30163 1.349814

|

ses | 0 (omitted)

1l.sector | 1.163307 .3995051 2.91 0.004 .3802913 1.946323

|

sector#c.ses |
1 | -1.550645 .2212156 -7.01 0.000 -1.98422 -1.117071

|
1.female | -1.217677 .2453943 -4.96 0.000 -1.698641 -.7367136

meanses | 0 (omitted)

|

female# |

c.meanses |
1 .0117788 .5131516 0.02 0.982 -.99398 1.017537

|

female# |
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sector

|
11 | .051641 .417778 0.12 0.902 -.7671888 .8704709
|
cons | 12.7195 .2479454 51.30 0.000 12.23354 13.20547
Random-effects Parameters | Estimate std. Err [95% Conf. Interval]
_____________________________ +________________________________________________
id: Unstructured |
var (female) | .9196108 .570399 .2726696 3.101498
var (_cons) | 2.901038 .5536637 1.995728 4.217018
cov (female, cons) | -1.080918 .4767802 -2.01539 -.1464463
_____________________________ +________________________________________________
Residual: Independent, |
by sector |
0: var(e) | 39.55357 .9427131 37.74838 41.44509
1: var(e) | 33.13314 .7991106 31.60336 34.73698
LR test vs. linear model: chi2(4) = 218.16 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
estat ic

Akaike's information criterion and Bayesian information criterion

Note: BIC uses N = number of observations. See [R] BIC note.
est store esector
lrtest baseline esector

27.39
0.0000

Likelihood-ratio test LR chi2 (1)
(Assumption: baseline nested in esector) Prob > chi?2

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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